Hiroshima University Researchers Create World’s First LED from Waste Rice Husks

Waste Rice Husks

A team of researchers from the Natural Science Centre for Basic Research and Development, Hiroshima University recently published their findings on finding a scalable method to fabricate quantum dots that have been developed in a way to recycle rice husks to create the first silicon quantum dot (QD) LED light.

 

Nearly 100 million ton of rice husk waste is generated globally each year while separating the grain from the husks. The new method reportedly transforms agricultural waste into state-of-the-art light-emitting diodes in a low-cost, environmentally friendly way. According to Ken-ichi Saitow, lead study author and professor of chemistry, Hiroshima University, “Since typical QDs often involve toxic material such as cadmium, lead or other heavy metals, environmental concerns have been frequently deliberated when using nanomaterials. Our proposed process and fabrication method for QDs minimize these concerns.”

Understanding porous silicon

Discovered in the 1950s, scientists have explored the uses of porous silicon (Si) in applications in lithium-ion batteries, luminescent materials, biomedical sensors and drug delivery systems. Porous silicon has photoluminescence properties, stemming from its microscopic (quantum-sized) dot structures that serve as semiconductors. It is non-toxic and is found abundantly in nature. On account of the environmental concerns surrounding the current quantum dots, the research team explored a new route to fabricate quantum dots that have a positive environmental impact. The result was using waste rick husks as it is an excellent source of high-purity silica (SiO2) and value-added Si powder.

The process

The researchers – including Honoka Ueda, Shiho Terada and Taisei Ono along with Saitow – used a combination of milling, heat treatments and chemical etching to process the rice husk silica. By burning off organic compounds of milled rice husks, the team milled rice husks and extracted silica powders. Thereon, they heated the silica powder in an electric furnace to obtain porous silicon powders via a reduction reaction. The outcome was that of a purified porous silicon powder that was further reduced to 3 nanometer in size by chemical etching. Lastly, the surface had been chemically functionalized for high chemical stability and high dispersivity in solvent, with 3 nm crystalline particles to produce the SiQDs that luminesce in the orange-red range with high luminescence efficiency of over 20 per cent. Confirming the non-toxic quality of silicon that makes it an attractive alternative to current semiconducting quantum dots that are available today, Saitow adds, “This is the first research to develop an LED from waste rice husks. The present method becomes a noble method for developing environmentally friendly quantum dot LEDs from natural products.”

The LEDs had been assembled as a series of material layers, where an indium-tin-oxide (ITO) glass substrate was the LED anode – a good conductor of electricity that is sufficiently transparent for light emission. Including the layer of SiQDs, additional layers had been spin-coated onto the ITO glass, while the material has been capped with aluminium film cathode. It is the chemical synthesis method that the team developed that has allowed them to evaluate the optical and optoelectrical properties of the SiQD light-emitting diode including the structures, synthesis yields and properties of the SiO2 and Si powders and SiQDs.

Future plans

The team is in plans to develop higher efficiency luminescence in the SiQDs and the LEDs, for which they will explore the possibility of producing SiQD LEDs. Additionally, the researchers also suggest that the method they have developed could be applied to other plants that contain SiO2 such as sugarcane, bamboo, wheat, barley or grasses.

 

Image credits: Hiroshima University

×
×

Post Your Comment


"Content that powers your Business. News that keeps you informed."

Surfaces Reporter is one of India's leading media in Print & Digital Telecast for News on Interiors & Architecture Projects, Products, Building Materials, and the Business of Design! Since 2011, it serves as a referral for designers & architects to know about inspiring projects and source new products. If you have a Product or Project worth publishing in Surfaces Reporter, please email us hello@surfacesreporter.com or you can also submit your project online.

Like Surfaces Reporter on Facebook | Follow us on Twitter and Instagram | Subscribe to our magazine | Sign Up for the FREE Surfaces Reporter Magazine Newsletter

Snøhettas Glass-Clad Beijing City Library Unveiled in China, Featuring Hills and Valleys

The Beijing City Library, a wonderful creation by Snøhetta, has recently been unveiled in China. The project features a glass-clad facade, adorned with towering tree-like columns while the interior rooms resemble hills.

Read more

Fascinating Facades: 3D Concrete Crinkled Wall in A School in Austria

One of its standout features is a 3D concrete crinkled wall, crafted with the help of artist Karl-Heinz Klopf. This wall, located on the southeast side of the building, is made of concrete and hangs like a wrinkled piece of paper from the roof to the first floor.

Read more

Colourful Aluminium Panel Clad Skyscraper in Hawaii Designed by Arquitectonica

This impressive building, located in the Ward Village development on Oahu, features rippling facades adorned with colorful aluminum panels.

Read more

Kengo Kumas Tessellated Building with Exquisite Wood-Paneled Eaves | Japan

The design features extensive wood-paneled eaves in a tessellated structure, creating a delicate interplay of materiality and transparency.

Read more


This is alt