North Carolina State University Researchers Create Kirigami-Inspired Materials for Shape-Shifting Architecture | SURFACES REPORTER Material Update

North Carolina State University researchers have reportedly developed a material that can be used to create structures that are capable of transforming into multiple architectures. Inspired by metamorphosis, the researchers envision applications ranging from construction to robotics.

North Carolina State University researchers have reportedly developed a material that can be used to create structures that are capable of transforming into multiple architectures. Inspired by metamorphosis, the researchers envision applications ranging from construction to robotics.

Co-author of Metamorphosis of three-dimensional kirigami-inspired reconfigurable and reprogrammable architected matter paper and an associate professor of mechanical and aerospace engineering at NC State, Jie Yin informs, “With metamorphosis in nature, animals change their fundamental shape. We’ve created a class of materials that can be used to create structures that change their fundamental architecture.”

Based on kirigami concept

The fundamental concept of Yin’s work draws inspiration from kirigami – a variation of origami that involves cutting and folding paper. Kirigami uses 2D materials; however, Yin applied this concept of kirigami to 3D materials.

Published in the journal Materials Today Physics, he notifies that the metamorphosis system begins with a single unit of 3D kirigami. Thereon, each unit can form different shapes in itself. That said, these units are modular, which means that they can be connected to form increasingly complex structures as well. Since these single units can form multiple shapes and can connect to another unit in different ways, the overall system therefore has the ability to form a wide variety of architectures.

Earlier, Yin demonstrated a similar concept where 3D kirigami units are stacked on each other. These units could be used to amass a structure. However, once assembled, the structure could not be disassembled.

The metamorphosis system allows actual joining of these units. Once connected, these units cannot be disconnected. However, the larger structures they create are capable of transforming into multiple architectures. 

The difference in the two methods

According to Yin, there are two big differences between the first kirigami system and the metamorphosis system. In the first kirigami system, the single units could be assembled into architectures and then later could also be disassembled. This acted as an advantage. However, once the units were assembled, the architecture was unable to transform as the sides of the unit were not rigid enough and fixed at a 90 degree angle; while the assembled structure could bend and move without fundamentally changing its geometry.

On the contrary, in the metamorphosis kirigami system, the structure cannot be disassembled just like in the first kirigami system as the sides of the unit are rigid and fixed at 90-degree angles. Also, the assembled structure does not bend or flex very much. However, unlike the first kirigami system, in the metamorphosis kirigami system, finished structure is capable of transforming into different architectures.

Tried and tested

The researchers have demonstrated that the metamorphosis system is capable of creating many different structures that are capable of bearing significant weight while maintaining their structural integrity. Yin believes that structural integrity is vital as construction is one potential application for the metamorphosis system.

Seeing its true potential, Yin adds, “If you scale this approach up, it could be the basis for a new generation of construction materials that can be used to create rapidly deployable structures. Think of the medical units that have had to be expanded on short notice during the pandemic, or the need for emergency housing shelters in the wake of a disaster.” He further stated that metamorphosis system could be also used to create a variety of robotic devices that can transform to respond to external stimuli or to perform different functions.

×
×

Post Your Comment


"Content that powers your Business. News that keeps you informed."

Surfaces Reporter is one of India's leading media in Print & Digital Telecast for News on Interiors & Architecture Projects, Products, Building Materials, and the Business of Design! Since 2011, it serves as a referral for designers & architects to know about inspiring projects and source new products. If you have a Product or Project worth publishing in Surfaces Reporter, please email us hello@surfacesreporter.com or you can also submit your project online.

Like Surfaces Reporter on Facebook | Follow us on Twitter and Instagram | Subscribe to our magazine | Sign Up for the FREE Surfaces Reporter Magazine Newsletter

Parametric Facade with Handmade Bricks| Language.Architecture.Body

The‘House of Hundred Thousand bricks’ showcases a sculptural facade made of handmade bricks that dynamically interact with the sun’s path, casting changing shadows throughout the year.

Read more

Rustic Entrance-Wood, Terracotta and Exposed Brick| Bhutha Earthen Architecture Studio

The entrance of this project features wooden columns supporting a pitched roof, creating a traditional and inviting ambiance. Inside, an inbuilt thinnai leads to a cozy living room with exposed brickwork and poured earth walls, adding warmth.

Read more

Red Agra Stone Adorned Edifice | Designplus Architecture(DPA)

The facade of Thapar University embodies a harmonious blend of tradition and modernity. Crafted from tall red Agra stone volumes with intricate white marble detailing, it pays homage to the timeless elegance of Indian architecture.

Read more

Indian Stone And Terrazzo Elegance| Renesa Architecture Design Interiors Studio

Tin Tin Restaurant & Bar by Renesa Architecture in Chandigarh, India, exudes an exotic yet familiar charm with its sweeping arches and contoured ceilings. Paying homage to modernist Carlo Scarpa, the venue features a maze of terrazzo flooring reminiscent of Scarpa’s work in Venice.

Read more


This is alt