First Natural Fibre Filament-Wound Composite Structure that is Robotically Fabricated | livMatS Pavilion

load-bearing structure

Constituting as the first building ever with a load-bearing structure that is entirely made of robotically wound flax fibre, a group of architects, engineers of the ITECH master’s programme at the Cluster of Excellence Integrative Computational Design and Construction for Architecture (IntCDC) at the University of Stuttgart and biologists from the Cluster of Excellence Living, Adaptive and Energy-autonomous Material Systems (livMatS) at the University of Freiburg designed the livMatS Pavilion.

 

Located in the Botanical Garden of the University of Freiburg, Germany, the material used to design the pavilion is fully naturally renewable, biodegradable, and regionally available in Central Europe. The pavilion showcases a novel combination of natural materials and advanced digital technologies by accounting concurrently for geometrical, material, structural, productional, environmental and aesthetic requirements alongside advanced robotic fabrication techniques that are applied to natural materials to generate a unique architecture that is at the same time ecological and expressive.

The livMatS pavilion’s wood structure is characterized by saguaro cactus and prickly pear cactus, where the cactus has a cylindrical, hollow wooden core. The intergrowth of net-like wood elements offers the skeleton additional stability. Its prickly pear cactus-like appearance is also interwoven with net-like wood fiber bundles, which are arranged in layers and interconnected for high load-bearing capacity.

Part of a series of successful experimental and highly innovative building demonstrators designed and realized by the interdisciplinary team of researchers and students at ICD/ITKE University of Stuttgart, the bio-inspired robotically woven structure is the first natural fibre filament-wound composite structure. With the help of coreless filament winding, the fibre structure is robotically fabricated. The pavilion, thus, aims to offer a viable, resource-efficient alternative to conventional construction methods. 

In the past two years, the team researched the potential of using natural fibres as a building material to act as a sustainable alternative to synthetically produced fibers. Through the livMatS pavilion, the team discovered that not only it has the potential to reduce the environmental footprint of the building but also provide a renewable material for the construction industry – where flax fibers are comparable in their mechanical properties to glass fiber rovings, providing similar stiffness per weight but with a much lower embodied energy.

Consisting of 15 flax fiber components that are robotically prefabricated exclusively from continuous spun natural fibers and a fibrous capstone element on top of the structure, the livMatS Pavilion weighs nearly 1.5 ton while covering an area of 46 sqm. The elements of the pavilion vary in overall length from 4.50 m to 5.50 m. The pavilion is covered in a waterproof polycarbonate skin, which provides weather shelter and also protects the fibres from direct UV radiation and moisture from snow and rain.

The livMatS Pavilion, for the coming five years, is expected to serve as an outdoor lecture room at the University of Freiburg that uses the Botanical Garden within the concept of learning from nature in nature as a research and teaching site.

 

Image credits: ICD; ITKE; IntCDC University of Stuttgart

×

Post Your Comment


"Content that powers your Business. News that keeps you informed."

Surfaces Reporter is one of India's leading media in Print & Digital Telecast for News on Interiors & Architecture Projects, Products, Building Materials, and the Business of Design! Since 2011, it serves as a referral for designers & architects to know about inspiring projects and source new products. If you have a Product or Project worth publishing in Surfaces Reporter, please email us hello@surfacesreporter.com or you can also submit your project online.

Like Surfaces Reporter on Facebook | Follow us on Twitter and Instagram | Subscribe to our magazine | Sign Up for the FREE Surfaces Reporter Magazine Newsletter

The Present & Future! Zafar Chaudhary, Monika Choudhary And Sahir Choudhary, Habitat Architects

Habitat Architects was founded in 1994 by Zafar Chaudhary, Ranjodh Singh and Monika Choudhary. The firm is renowned for blending traditional architectural methods with modern techniques, showcasing an immersive design philosophy and meticulous attention to detail.

Read more

Marina Tabassum and Her Firm, Marina Tabassum Architects (MTA), Selected For The Serpentine Pavilion 2025

Serpentine is delighted to announce that Bangladeshi architect and educator Marina Tabassum and her firm, Marina Tabassum Architects (MTA), have been selected to design the 2025 Pavilion, titled A Capsule in Time.

Read more

Zaha Hadid Architects Unveil Dynamic Marisfrolg Showroom in Shenzhen

Blending sustainable materials with timeless design, the 2,900 sq. m showroom reflects Marisfrolg Fashion Group’s rich heritage and innovative ethos, reports SURFACES REPORTER (SR).

Read more

Bamboo, Terracotta, and Antique Metal in Harmonious Design | Hiren Patel Architects

The bamboo roof is adorned with terracotta tiles specifically manufactured in Morbi for this project.

Read more


This is alt